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Abstract. We present two new metrics for measuring sharpness of an
image. Both methods exploit a reorganized Discrete Cosine Transform
(DCT) representation and analyze the reorganized coefficients to use the
most useful components for sharpness measuring. Our first metric utilizes
optimal high and middle frequency coefficients for relative sharpness eval-
uation. It is well suitable for focus measure as it is super sensitive to the
best-focus position and could predict stable and accurate focus values for
various subjects and scenes with different lighting and noise conditions.
Experiments demonstrate that it has high discrimination power even for
high noisy and low-contrast images. The second metric constructs energy
maps for each scale of reorganized DCT coefficients, and determines ab-
solute sharpness/blurriness using the local maxima energy information.
Compared with most existing no-reference sharpness/blurriness metrics,
this metric is very efficient in sharpness measurement for images with
different contents, and can be used in real-time auto-focus application.
Experiments show that it correlates well with perceived sharpness.

1 Introduction

The perceptions of sharpness and blurriness are closely related to the details
and clarity of an image. Most often they are used as antonyms since sharpness
is inversely proportional to blurriness. For sharpness or blurriness measurement,
subjective method that relies on human observations is accurate but has limited
use for imaging applications. By contrast, objective metric which automatically
assesses the degree of sharpness/blurriness is important for many applications of
image processing and computer vision. One important application of sharpness
measurement is for contrast-based auto-focus. In contrast-based auto-focus, a
measure of focus is detected from each image acquired at different lens posi-
tions, and is used for adjusting the camera lens to locate the in-focus position by
finding the maximum focus measure. Focus measure is normally defined in terms
of sharpness, which is computed by a sharpness metric. Because the maximum
focus measure corresponds to the best focused position, the sharpness metric
largely determines focusing accuracy. Other important applications of sharpness
measurement include image quality assessment, image enhancement and restora-
tion, for all of which the sharpness evaluation may play critical roles in the design
and optimization of the relevant algorithms.
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The accurate evaluation of image sharpness is a difficult problem because
sharpness is affected by many factors such as the image content, illumination,
noise and spatial activity [1, 2]. Our motivation of developing new sharpness met-
rics is twofold. Firstly, we are interested in accurate and robust relative sharpness
measures. A relative sharpness metric is designed to predict sharpness of images
that have the same content but may fail for different images. It is often used
as a focus measure for auto-focus systems where the relative largest sharpness
point determines the best-focus position. For actual autofocusing, the subjects
being focused vary across scenes, being static or dynamic, having strong or poor
contrast, with different illumination conditions that may cause serious noisy dis-
tortion and poor image quality. Although various relative sharpness metrics for
focus measurement have been proposed [3–10], seldom methods are reported to
be suitable for autofocusing in different scenes under severe illumination condi-
tions. We are motivated to design a new relative sharpness metric that is robust
to noise, illuminations, scene movements and low-contrast image contents. Sec-
ondly, we are also interested in evaluating an absolute value of sharpness for an
given image. An absolute sharpness measure means its evaluation is not relative
to a reference image, i.e., it is a no-reference sharpness measure. It can discrimi-
nate the degree of sharpness among images that have different contents. Existing
no-reference sharpness metrics are oriented to estimate extra parameters [11, 12,
2, 13, 1], and tend to have high computation complexity. These methods may pro-
duce accurate estimations but may not be suitable for situations where limited
computation resource is available and real-time performance is needed. For our
purpose, we desire a simple and efficient absolute sharpness metric which would
be used combined with the relative sharpness metric for efficient autofocusing.

In this work, we first propose a robust DCT-based relative sharpness metric,
where we exploit reorganized DCT coefficients to select the most suitable compo-
nents that have high effect on sharpness measure. A nice property of our metric
is that it has high discrimination power even for high noisy and low-contrast
images.It is very suitable for focus measure as it is super sensitive to the best-
focus position and could predict stable and accurate focus values for various
subjects and scenes with different lighting and noise conditions. We also present
an efficient DCT-based absolute sharpness metric. This metric exploits the same
framework of the reorganized DCT representation. It correlates well with per-
ceived sharpness and is efficient in sharpness measurement for images with dif-
ferent contents. We demonstrate the performance of our metrics by comparing
them against several most commonly used metrics both on public Gaussian blur
images of the LIVE dataset [14] and the captured out-of-focus sequences.

2 Related Work

Many sharpness metrics are developed mainly for the application of auto-focus,
where these metrics are used to give a relative evaluation of sharpness for mea-
suring focus. Because an auto-focus system generally requires real-time per-
formance for various scenes under different illumination conditions, these rel-
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ative sharpness metrics are required to be robust and efficient. Existing spatial-
domain relative sharpness metrics [3, 15, 4] often determine sharpness by ex-
ploiting edge, gray scale, histogram or correlation information, while frequency-
domain methods [16, 17, 8, 6, 7, 9] first transform image to a frequency domain
using the fast Fourier transform (FFT) [18], DCT [8, 6, 7, 9] or discrete wavelet
transform (DWT) [16, 17], and then compute sharpness with the high or mid-
dle frequency components of the transformed data. Generally, spatial-domain
sharpness measures are relative computational efficiency, but mostly sensitive to
noise [19, 20]. This would cause many local maxima in focus curve especially for
scenes under low illumination conditions, making it difficult for autofocusing to
find the best focused position. Frequency-domain methods usually require more
computational cost as they need an extra frequency transform step. Because
they calculate sharpness based on selecting of desired high or middle frequency
coefficients, they are relatively insensitive to noise [20, 5].

Besides these relative sharpness metrics, there are also many no-reference
metrics that are designed for absolute sharpness evaluation. In theory, an ab-
solute sharpness metric can give an absolute evaluation of image sharpness re-
gardless of the image contents. One typical way is to exploit the information
of edges [21–23]. The method of [21] first detects edges of an image and then
evaluate the blurriness based on the edge widths. The work [22] presents two
blurriness metrics that are based on an analysis of the edges and adjacent regions
in an image. In [23], the authors present the notion of just noticeable blur (JNB)
and integrate it into a probability summation model. The work [24] improves the
method of [12] by incorporating a visual attention model. Similarly, [23] also uses
the concept of JNB and combines it with the cumulative probability of detecting
blur at an edge. There are also spatial algorithms that do not rely on measuring
the spread of edges. For example, the method of [25] utilizes eigenvalues of an
image to evaluate sharpness.

Various frequency methods are also proposed for absolute sharpness/blurriness
estimation. The work [26] computes sharpness using the average 2D kurtosis of
the 8× 8 DCT blocks. The work [11] presents a blurriness metric that is based
on histogram computation of non-zero DCT coefficients. The method [27] uses
Harr wavelet transform for sharpness analysis. In [28], a sharpness metric that
uses both frequency contents and spatial features in one framework in order to
avoid the pitfalls of alternative methods. The work [2] also utilizes both spectral
and spatial features of an image, where the magnitude spectrum and the total
spatial variation is measured for sharpness evaluation.

3 The Proposed Relative Sharpness Metric

We propose a relative sharpness metric that is designed for sharpness evaluation
of images having similar scenes. This metric is suitable for auto-focus applica-
tion where the primary requirement is to evaluate the relative sharpnesses of a
sequence images of the same scene being focused. Our method is in the DCT
domain. Compared with other transform algorithms such as FFT or DWT, DCT



4 Zheng Zhang, Yu Liu, Xin Tan, Maojun Zhang

has an important advantage is that DCT can be computed efficiently by using
optimized DCT-specific platforms [29, 30] and fast computation algorithms [31].
Another advantage is many video encoding algorithms are based on block-based
DCT data [32, 33]. This allows us to exploit the already available DCT coeffi-
cients and may reach sharpness metrics of high efficiency.

3.1 A Reorganized DCT Representation

DCT is an algorithm that transforms image data of spatial-domain into frequency-
domain. Let f(x, y) denotes the spatial pixel value at (x, y) of an image with
size M ×N , F (i, j) denotes the corresponding DCT frequency components, the
mapping between f(x, y) and F (i, j) is:

F (i, j) =
∑
(x,y)

f(x, y)Cij(x, y;M,N) (1)

where Cij are orthogonal 2D basis functions, defined as

Cij = ci(x;M)cj(y;N) (2)

where

cϕ(z;A) = α(ϕ;A)cos(
πϕ(2z + 1)

2A
) (3)

α(ϕ;A) =

{ 1√
A

if ϕ = 0;√
2
A otherwise.

(4)

For sharpness measure, we are interested in using 8 × 8 DCT which carries
the transform on 8 × 8 pixel blocks. Several efficient algorithms and hardware
implementation solutions exist for this block based DCT [6]. The operation of
8 × 8 DCT would result in a series of 64 coefficients{F (i, j)|i = 0, 1, · · · , 7, j =
0, 1, · · · , 7}, where F (0, 0) is the DC coefficient, and the others are AC coeffi-
cients. Each of these coefficients represents a particular spatial frequency.

A typical image is consisted of a set of smooth regions delimited by edge
discontinuities. After applied block-based DCT operation, the image energy of
smooth regions is compacted into the DC coeffiients together with a few high-
frequency AC coefficients, while the energy of edges is compacted into a small
number of high-frequency AC coefficients [34, 33]. This energy compaction prop-
erty of DCT allows us to select a set of high-frequency components that are
related to the edges in spatial domain for measuring sharpness.We exploit a re-
organization strategy of DCT coefficients [32, 34] for finding the most suitable
components that have high effect on focus measure. In this reorganization, each
8× 8 block is taken as a three scale tree of coefficients with 10 subbands decom-
position, as shown in Fig 1(a). After that, the coefficients of the same subbands
for all blocks are grouped together and put onto their corresponding positions
(Fig. 1(b)). Fig. 1(c) shows an example of the reorganization representation of
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Fig. 1. Reorganization strategy of DCT coefficients. (a) Each 8 × 8 block is taken as
three-scale tree with ten-subband decomposition; (b) The reorganization representation
for an image where coefficients of the same subbands for all 8 × 8 blocks are grouped
together and put onto their corresponding positions; (c) reorganization result of Lena
image;

Subband 4
F (0, 2) F (0, 3) F (1, 2) F (1, 3)
0.5348 0.1576 0.2070 0.1006

Subband 5
F (2, 0) F (2, 1) F (3, 0) F (3, 1)
0.4706 0.3001 0.1159 0.1159

Subband 6
F (2, 2) F (2, 3) F (3, 2) F (3, 3)
0.4806 0.2355 0.1674 0.1165

Table 1. Enery ratios of each coefficient to the total four coefficients in each subband
of Lena image. Each ratio is computed using energy of the corresponding coefficients
collected from all blocks.

one image. It is seen that this form of reorganization of block-based DCT co-
efficients has structural similar characteristics to the three-scale multiresolution
decomposition of discrete wavelet transform [35]. For example, the DCT sub-
bands S7, S8 and S9 correspond to the level-1 HL, LH and HH subbands of
DWT separately.

3.2 The Metric

Our sharpness measures exploit the structural similarities between the subbands
of multi-scale DWT and the reorganized subbands of block-based DCT. For
three-level DWT data, low frequency components increase with the level of sub-
bands, where the subbands of level-1 and level-2 are dominated by high and mid-
dle frequency coefficients. Since the subbands {Si|i = 7, 8, 9} and {Si|i = 4, 5, 6}
of reorganized DCT correspond to the level-1 and level-2 subbands of DWT re-
spectively, it is reasonable to calculate the sharpness using the components in
these DCT subbands regions.

To select the optimum coefficient components that have high discrimination
power, we analyze and compare the different effects of using middle and high
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Fig. 2. Comparison of middle-frequency and high-frequency based sharpness measure.
Above: best-focus images of three sequences taken with different subjects; Below: sharp-
ness or focus values of few neighbor positions around the best focused position are
shown.

frequencies on measuring sharpness. According to the structural similarities be-
tween reorganized DCT and DWT coefficients, we select middle frequencies from
subbands (4, 5, 6) and high frequencies from subbands (7, 8, 9) for each 8 × 8
DCT block. Taking signal power of all coefficients in the corresponding subbands
to measure sharpness is one possible way, but it would certainly need high com-
putational cost. Since the histograms of corresponding coefficients collected from
all blocks shows that the signal energy is usually concentrated in the lower fre-
quency bands [36], we use the coefficients centralized in upper left corner of each
subband. Table. 1 gives the energy ratios of each coefficient to all coefficients in
the corresponding subbands of Lena image. These ratios are computed using all
block data. It is seen that about half of the energy associated with subbands 4, 5
and 6 is taken up by the corresponding upper left coefficients. Hence, we choose
the three upper left corner coefficients for the case of middle frequency based
metric, i.e., F (0, 2) of subband 4, F (2, 0) of subband 5 and F (2, 2) of subband
6. We define the middle-frequency sharpness metric of single block as follows:

Mmid = |F (0, 2)|2 + |F (2, 0)|2 + |F (2, 2)|2 (5)

The high frequency based metric is defined in a similar way. In the three scale
tree decomposition (Fig. 1(a)), each coefficient of subbands 4, 5, and 6 is as-
sociated with four children in subbands 7, 8 and 9 respectively. For instance,
coefficients F (0, 4), F (0, 5), F (1, 4) and F (1, 5) are the four children of the par-
ent coefficient F (0, 2). It can be found that much of the energy of subbands 7,
8, and 9 is also concentrated in the corresponding four children. We define the
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Fig. 3. Sharpness measures on the synthetic noisy image sequence. (a-b) the focus
curves on Seq.1 without (a) and with white Gaussian noise (b); Note that each point
of the focus curves is normalized by the corresponding maximum sharpness.

high frequency metric as follows:

Mhig =

1∑
i=0

5∑
j=4

|F (i, j)|2 +

5∑
i=4

1∑
j=0

|F (i, j)|2 +

5∑
i=4

5∑
j=4

|F (i, j)|2 (6)

Fig. 2 gives the focus curves of the two measures on three sequences. The aver-
age sharpness of all blocks are taken into account for focus evaluation. It is seen
that both measures have a peak at the best focused position, but Mhig gives
sharper focus curves. For Seq.3 only Mhig gives sharpest value at the correct
focus position. These figures indicate that Mhig is more sensitive to best focused
position. Fig. 3 plots focus curves of the two measures for the images with and
without noise added, where the synthetic noisy image is generated by adding
Gaussian noise with standard deviation 20 to Seq.1. We can see that though
both measures produce maxima values at the best focused position, Mmid shows
more robust performance as its focus curve is less effected by noise, while Mhig

has smaller dynamic sharpness range around the peak. We may conclude that
using high frequencies for focus measuring, e.g., Mhig, would have higher dis-
crimination power as they are more sensitive to the best-focus position, but may
be effected by noise. On the contrast, the middle frequency based measures like
Mmid shows very strong robustness of anti-noise but may lack of discriminativity
in ambiguous cases. Our proposed relative sharpness metric Mreodct combines
both middle and high frequencies in a linear form defined as follows:

Mreodct = λMmid +M∗hig (7)

where λ is a factor that balances the effect of both measures Mmid and M∗hig.
M∗hig is a variant of Mhig and is defined as:

M∗hig = |F (0, 4)|2 + |F (0, 5)|2 + |F (1, 4)|2 (8)

+ |F (4, 0)|2 + |F (4, 1)|2 + |F (5, 0)|2

+ |F (4, 4)|2 + |F (4, 5)|2 + |F (5, 4)|2
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Fig. 4. Blurriness and focus value curves of one sample sequence.

where three coefficient components, i.e., F (1, 5), F (5, 1) and F (5, 5) are removed
from the part of Mhig. We find this in addition to being less computation con-
suming but almost reduces no performance of the measure.

3.3 Sharpness Detection Ability (SDA) Measure

A good sharpness measure should decrease with an increasing blurring. Higher
measure difference between the consecutive values indicates stronger discrim-
ination ability. Let Mt denotes the normalized focus measure of image frame
t, σt is the corresponding Gaussian blur standard deviation. Give measures on
frames t = 1, · · · , T , we define a new metric named Sharpness Detection Abil-
ity measure (SDA) to quantify the sharpness functions. SDA is defined as a
psychometric function [37] which can be modeled as follows:

SDA =
1

T

T∑
t=1

1− exp
(
−
∣∣∣Mt+1 −Mt

σt+1 − σt

∣∣∣ 1
σt+1

)
(9)

SDA is designed to produce higher value on larger sharpness differences with
smaller blur deviation between consecutive images. This means it is a good in-
dicator of sensitivity to best focus. Additionally, if the consecutive sharpness
measure differences change inverse proportionally with the corresponding devi-
ation differences, the metric would produce larger value which indicates better
sharpness discrimination power.

4 The Proposed Absolute Sharpness Metric

4.1 Our Motivation

One problem of the initialization stage in autofocusing is to set the size of
focusing-step properly. A smaller focusing-step size should be used when the
starting image is sharper, and a larger step should be used when the image is
blurred. This requires to know the absolute sharpness or blurriness of the starting
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image. Another problem is to decide which direction to move the focus motor.
Searching in a wrong direction would causes slow focusing which is a bad vi-
sual experience. Since the arbitrary starting position may be severely blurred or
very close to best-focus position, it is difficult to successfully judge the direction
efficiently for all cases.

Fig. 4 shows blurriness (i.e., the absolute sharpness) and focus value curves
for one focusing sequence. It is seen that the absolute sharpness curve monotonously
decreases with the increase of focus value, showing high discriminative power in
distinguishing blurriness even in the area where the focus value curve is very
flat. This motivates us to exploit both absolute sharpness and focus value (i.e.,
the relative sharpness) for solving the aforementioned problems. Using the rel-
ative sharpness measures of autofocusing to decide the absolute blurriness of
image would meet problems. This is because that they are highly dependent on
image content, and they provide relative sharpness values that are meaningful
only for an entire focusing sequence captured at the same scene. Most existing
absolute sharpness/blurriness estimation algorithms [12, 11, 27] are proposed for
image quality assessment. They are not suitable for our task due to their high
computational complexity.

4.2 The Algorithm

This algorithm is inspired by the work [27] that uses Harr wavelet transform
(HWT) for blur detection. In this work, image edges are classified into four types:
Dirac-Structure, Astep-Structure, Gstep-Structure, and Roof-Structure. When
blur happens both Dirac-Structure and Astep-Structure edges will disappear,
and Gstep-Structure as well as Roof-Structure tend to lose their sharpness. The
algorithm performs edge detection by finding the local maxima on three-scale
HWT of the image, and counts the numbers of each edge type according to a set
of rules. As a result, the blur degree is calculated using the ratio of the number of
Roof-Structure and Gstep-Structure edges that lost their sharpness to the total
number of Roof-Structure and Gstep-Structure edges.

The above blur detection method works effectively for out-of-focus or linear
motion blur. However, the use of HWT that consumes much extra computa-
tional resources would not be suitable for the auto-focus application where the
main processing is in the DCT domain. Moreover, we find that the algorithm
is fairly sensitive to noise. In our method, blur estimation is performed in the
DCT domain where we exploit the reorganized DCT representation described
in Sect. 3.1. An energy map for each level i of the three-level (i = 1, 2, 3) DCT
coefficients is firstly constructed as follows:

Ei(k, l) =

√(
Si1(k, l)

)2
+
(
Si2(k, l)

)2
(10)

where {Sij |j = 1, 2, 3} with Sij = S(3−i)×3+j denote the subbands associated
with the level i decomposition in the reorganized DCT representation, as il-
lustrated in Fig. 1(b). In Equ. 10, the coefficients of subbands S3, S6, S9 are
neglected for energy calculation. This is because that these subbands consist
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Algorithm 1: Absolute sharpness or blurriness estimation using the reorga-
nized block DCT
(1). Compute 8× 8 DCT of the image of interest, construct energy maps Ei using
Equ. 10 for each scale of DCT coefficients in the reorganized representation.
(2). Find the local maxima of each block for every energy map to obtain three edge
maps EMi.
(3). Set Nrg ← 0, Nblur ← 0; for every point (k, l) do

if EM1(k, l) ≥ T1||EM2(k, l) ≥ T1||EM3(k, l) ≥ T1 then
if EM1(k, l) ≤ EM2(k, l) ≤ EM3(k, l)||
EM2(k, l) ≥ EM1(k, l)&& EM2(k, l) ≥ EM3(k, l) then

Nrg ← Nrg + 1;
if EM2(k, l) ≤ T2 then

Nblur ← Nblur + 1;

(4). Compute blurriness B = Nblur
Nrg

.

of relative higher frequency components, of which the energy is more easily af-
fected by noise. After that, three edge maps {EMi|i = 1, 2, 3} of the same size
are extracted by finding the local maxima of every block in each energy map.
The block size of Ei is 2a−i × 2a−i, where a is usually set to 3 or 4.

Considering that the energy of DCT coefficient tends to centralize in upper
left corner of each subband, we can construct E1 by only using the upper left
coefficients of each block. For instance, {Fi,j |i = 4, 5; j = 0, 1; } and {Fi,j |i =
0, 1; j = 4, 5; } of each 8 × 8 block are used to construct E1 for the case when
a = 3. Accordingly the maxima energy of the 4 coefficients of each block are then
taken as the local maxima for building edge map EM1. This would significantly
increase the computational efficiency.

Two threshold parameters Ti(i = 1, 2) (T2 ≥ T1) are used in our algorithm.
T1 is used for detecting edge points, and T2 is for judging edge points that
lose sharpness. For any Gstep-Structure or Roof-Structure edge point (k, l), our
algorithm decides whether this point is blurred by: EM2(k, l) < T2. Since the
edge map EM1 is based on high frequency coefficients, it is more sensitive to
noise. By contrast, the use of edge map EM2 for finding blurred points leads to
strong anti-noise ability. The presented method is summarized in Algorithm 1.

5 Experiments

We first evaluate our proposed relative sharpness metric on public available
dataset. A total of five spatial-domain measures and four DCT-based measures
are compared with the proposed metricMreodct. The spatial-domain measures in-
clude the Tenengrad or Sobe function Msob, the Squared gradient Msqg, the sum
of differences across rows and columns Msmd, the sum of Laplacians Msml, and
the energy of Laplacians Meol. Definitions of these measures are not given here
as they can be explicitly found in several related works [3, 7, 9]. The four DCT-
based methods include the Bayes spectral entropy based measure Mbsedct [6],
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Fig. 5. Above row: two sample Gaussian blur images of the same scene from the LIVE
dataset [14], (a) blur deviation σ = 0, (b) σ = 2.624972; Below row: white noise is
added to the corresponding images (c-d), with noise deviation σnoise = 30.
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noise (b); Below row: the corresponding SDA evaluations.
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σnoise = 30

Measure Msob Msml Meol Mbedct Mdirdct Mreodct

coinsinfountain 0.1018 0.0920 0.0911 0.2169 0.3484 0.3640
ocean 0.1018 0.0920 0.0911 0.2169 0.3484 0.3640
statue 0.1516 0.1455 0.1455 0.2023 0.3437 0.3213

dancers 0.1976 0.2099 0.2077 0.3134 0.3619 0.4145
paintedhouse 0.1599 0.1562 0.1562 0.1956 0.3819 0.4001

stream 0.1174 0.1160 0.1105 0.3160 0.3158 0.4674
bikes 0.2223 0.2435 0.2409 0.3177 0.3569 0.4316

flowersoih35 0.1972 0.1910 0.1859 0.3064 0.3224 0.4516
parrots 0.1592 0.1655 0.1656 0.2688 0.3532 0.3511

studentsculpture 0.1157 0.1257 0.1282 0.2705 0.3694 0.4520
building2 0.0862 0.0795 0.0702 0.3263 0.3916 0.4919

plane 0.2178 0.2216 0.2222 0.3145 0.3430 0.4040
woman 0.1287 0.1351 0.1297 0.2369 0.3641 0.3648
house 0.2271 0.2233 0.2214 0.2169 0.3960 0.4116
rapids 0.1550 0.1563 0.1523 0.3385 0.3688 0.4469

womanhat 0.0772 0.0752 0.0749 0.1456 0.2879 0.3047
caps 0.2155 0.2171 0.2177 0.2011 0.3405 0.3568

lighthouse 0.1903 0.1797 0.1770 0.2853 0.4055 0.4604
sailing1 0.1464 0.1476 0.1449 0.2716 0.3987 0.4691

carnivaldolls 0.1046 0.0987 0.0968 0.2339 0.3366 0.3626
lighthouse2 0.0875 0.1044 0.1075 0.2426 0.3367 0.3884

sailing2 0.1556 0.1618 0.1643 0.1867 0.3989 0.4111
cemetry 0.1126 0.1312 0.1339 0.3070 0.3644 0.4476

manfishing 0.1815 0.1707 0.1610 0.2140 0.3324 0.3967
sailing3 0.1267 0.1261 0.1253 0.1415 0.2561 0.2681

churchandcapitol 0.1674 0.1884 0.1956 0.3430 0.4112 0.4512
monarch 0.3166 0.3136 0.3166 0.3642 0.3881 0.4181
sailing4 0.2495 0.2413 0.2374 0.3545 0.4010 0.4598

Table 2. SDA accuracy between different sharpness measures on LIVE Gaussian blur
sequences with sythetic noises.

the middle frequency component based measure Mmfdct [7], the ratio of AC and
DC energy based measure Mrdct [8], and the block direction information based
measure Mdirdct [9]. The public available dataset LIVE [14] is used for the com-
parison experiments. LIVE provides 145 Gaussian blur images which are created
from 29 input images. Fig. 5 shows example Gaussian blur images of LIVE.

Fig. 6(a) plots the sharpness evaluation results on one blur image sequence
named “buildings” of LIVE (Fig. 6). Fig. 6(c) gives the corresponding evalua-
tions of SDA. The DCT based sharpness measures like Mrdct, Mdirdct and the
proposed one show relative better performance than all spatial-domain func-
tions. To test noise sensitivity of the proposed measure, white Gaussian noise
of standard deviation σnoise is added to the blur images, and the 10 sharpness
measures are tested again. Fig. 6(b) and 6(d) gives the results on the noised
“buildings” sequence. We can see all measures except of Mreodct and Mdirdct are
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Fig. 7. From left to right: sharpness measuring on example sequences of scenes with
low contrast (“Hand”), strong lighting (“LightBeam”), high noise (“NightBuilding”)
and moving objects (“MovingFingers”).

seriously affected by noise. Table 2 gives SDA evaluations of the 6 measures in-
cluding Msob, Msml, Meol, Mrdct, Mdirdct and Mreodct on the 29 LIVE Gaussian
image sequences with synthetic noise. It is found that Mreodct shows very robust
performance and outperforms other measures both in accuracy and robustness.

The proposed sharpness measure is also tested on four real focusing se-
quences, which are labeled as “Hand”, “LightBeam”, “NightBuilding” and “Mov-
ingFingers”. As shown in Fig. 7, the Hand sequence is poor in contrast, the
LightBeam has strong lighting distortions, the NightBuilding is captured at low
illumination, and the MovingFingers is a sequence of moving subject. For all
evaluation, the center window of size 1

3w×
1
3h (w and h denote the image width

and height separately) is taken as the area for sharpness calculation. For the
Hand sequence, we can see from the focus curves that only Mreodct gives largest
sharpness dynamic range and correct position of best focus. In sequence Light-
Beam, the factors such as halo edges and illumination changes would largely
affect the sharpness measure. Multiple peaks and many fluctuations may ex-
ist, as seen from the focus curves. The results show that the proposed measure
Mreodct is able to give the correct maximum measure for this complex case. For
sequence NightBuilding which is polluted by noise due to the low illumination,
Mreodct shows the best performance of anti-noise. It also produces stable and
reliable estimations when the subject is moving, as can be seen from the result
of the sequence MovingFingers.
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Fig. 8. Blur estimation for sample Gaussian blurred images of LIVE dataset, of which
the blurred image set is obtained by filtering 29 input images with different content
using Gaussian kernel of different standard deviation σ. For all images, our algorithm
uses T1 = 5, T2 = 10, while other algorithms use the optimal parameters as suggested.
The normalized σ is taken as the ground truth of blurriness.

We have tested the proposed no-reference metric of absolute sharpness on the
Gaussian blur sequence of the public LIVE dataset. From the given 145 Gaussian
blur images, we select 29 blurred images that have different blur σ and image
contents. Three commonly used metrics are chosen for performance comparison:
the wavelet transform method (WT) [27], the kurtosis method (KURT) [26], and
the just noticeable blur method (JNB) [12]. The parameters of each algorithm
are set according to the optimal suggestions described in the relevant work. Fig. 8
gives the result of the four metrics for judging blurred points. It is seen that our
metric outperforms other methods both in robustness and accuracy.

6 Conclusion

In this work, we propose two sharpness metrics by exploiting a reorganized DCT
representation. The first metric selects the most suitable components that have
high effect on sharpness measuring. This metric has high discrimination power
even for high noisy and low-contrast images. We have used it for auto-focus
application where it shows super sensitive to the best-focus position and could
predict stable sharpness measures for various subjects and scenes with different
lighting and noise conditions. We also present an efficient DCT-based absolute
sharpness metric. This metric exploits the same framework of the reorganized
DCT representation. It correlates well with perceived sharpness and is efficient in
sharpness measurement for images with different contents. We demonstrate the
performance of our metrics by comparing them against several most commonly
used metrics both on public and the captured out-of-focus sequences.
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